Returns { from: number; to: number; units: bigint; }[]
Dev
This function uses a simplification which requires that the amplification for all vaults are equal.
This is because when the amplification is equal, we can extend the desire of
(PTi + pti)/PTi = (PTj + ptj)/PTj to ((PTi + pti)/PTi)^(1-ampi) = ((PTj + ptj)/PTj)^(1-ampj) since ampi == ampj
// By using the liquidity swap equation U = Ni · walpha_i0^(1-ampi) * ((PTi + pti)/PTi)^(1-ampi) we observe that we can
U/(sum Ni · walpha_i0^(1-ampi)). to get an estimation of now many units to contribute per the first part.
Dev
This function uses a simplification which requires that the amplification for all vaults are equal. This is because when the amplification is equal, we can extend the desire of (PTi + pti)/PTi = (PTj + ptj)/PTj to ((PTi + pti)/PTi)^(1-ampi) = ((PTj + ptj)/PTj)^(1-ampj) since ampi == ampj // By using the liquidity swap equation U = Ni · walpha_i0^(1-ampi) * ((PTi + pti)/PTi)^(1-ampi) we observe that we can U/(sum Ni · walpha_i0^(1-ampi)). to get an estimation of now many units to contribute per the first part.